
11/25/18

1

1,

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.

Birzeit University, Palestine, 2015

mjarrar©2015

Counting

9.1 Basics of Probability and Counting

9.2 Possibility Trees and the Multiplication Rule 

9.3 Counting Elements of Disjoint Sets: Addition Rule 

9.5 Counting Subsets of a Set: Combinations 

9.6 r-Combinations with Repetition Allowed 

2,

Watch this lecture 
and download the slides

Acknowledgement:  
This lecture is based on (but not limited to) to chapter 9 in “Discrete Mathematics with Applications 
by Susanna S. Epp (3rd Edition)”. 

More Online Courses at: http://www.jarrar.info
Course Page: http://www.jarrar.info/courses/DMath/

http://www.jarrar.info/
http://www.jarrar.info/courses/DMath/


11/25/18

2

3,

9.1 Basics of Probability and Counting

In this lecture:

q Part 1: Probability and Sample Space

qPart 2: Counting in Sub lists
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Tossing Coins

Tossing two coins and observing whether 0, 1, or 2 
heads are obtained. 

What are the chances of having 0,1,2 heads?
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9.1 Introduction
Imagine tossing two coins and observing whether 0, 1, or 2 heads are obtained. It would
be natural to guess that each of these events occurs about one-third of the time, but in
fact this is not the case. Table 9.1.1 below shows actual data obtained from tossing two
quarters 50 times.

Table 9.1.1 Experimental Data Obtained from Tossing Two Quarters 50 Times

Frequency Relative Frequency
(Number of times (Fraction of times

Event Tally the event occurred) the event occurred)

2 heads obtained |||| |||| | 11 22%

1 head obtained |||| |||| |||| |||| |||| || 27 54%

0 heads obtained |||| |||| || 12 24%

As you can see, the relative frequency of obtaining exactly 1 head was roughly twice
as great as that of obtaining either 2 heads or 0 heads. It turns out that the mathematical
theory of probability can be used to predict that a result like this will almost always occur.
To see how, call the two coins A and B, and suppose that each is perfectly balanced.
Then each has an equal chance of coming up heads or tails, and when the two are tossed
together, the four outcomes pictured in Figure 9.1.2 are all equally likely.

A B A B A B A B

2 heads obtained 1 head obtained 0 heads obtained

Figure 9.1.2 Equally Likely Outcomes from Tossing Two Balanced Coins

Figure 9.1.2 shows that there is a 1 in 4 chance of obtaining two heads and a 1 in
4 chance of obtaining no heads. The chance of obtaining one head, however, is 2 in 4
because either A could come up heads and B tails or B could come up heads and A tails.
So if you repeatedly toss two balanced coins and record the number of heads, you should
expect relative frequencies similar to those shown in Table 9.1.1.

To formalize this analysis and extend it to more complex situations, we introduce the
notions of random process, sample space, event and probability. To say that a process
is random means that when it takes place, one outcome from some set of outcomes is
sure to occur, but it is impossible to predict with certainty which outcome that will be.
For instance, if an ordinary person performs the experiment of tossing an ordinary coin
into the air and allowing it to fall flat on the ground, it can be predicted with certainty
that the coin will land either heads up or tails up (so the set of outcomes can be denoted
{heads, tails}), but it is not known for sure whether heads or tails will occur. We restricted
this experiment to ordinary people because a skilled magician can toss a coin in a way
that appears random but is not, and a physicist equipped with first-rate measuring devices
may be able to analyze all the forces on the coin and correctly predict its landing position.
Just a few of many examples of random processes or experiments are choosing winners
in state lotteries, selecting respondents in public opinion polls, and choosing subjects to
receive treatments or serve as controls in medical experiments. The set of outcomes that
can result from a random process or experiment is called a sample space.
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518 Chapter 9 Counting and Probability

• Definition

A sample space is the set of all possible outcomes of a random process or experiment.
An event is a subset of a sample space.

In case an experiment has finitely many outcomes and all outcomes are equally likely
to occur, the probability of an event (set of outcomes) is just the ratio of the number
of outcomes in the event to the total number of outcomes. Strictly speaking, this result
can be deduced from a set of axioms for probability formulated in 1933 by the Russian
mathematician A. N. Kolmogorov. In Section 9.8 we discuss the axioms and show how to
derive their consequences formally. At present, we take a naïve approach to probability
and simply state the result as a principle.

Equally Likely Probability Formula

If S is a finite sample space in which all outcomes are equally likely and E is an
event in S, then the probability of E, denoted P(E), is

P(E) = the number of outcomes in E
the total number of outcomes in S

.

• Notation

For any finite set A, N (A) denotes the number of elements in A.

With this notation, the equally likely probability formula becomes

P(E) = N (E)

N (S)
.

Example 9.1.1 Probabilities for a Deck of Cards

An ordinary deck of cards contains 52 cards divided into four suits. The red suits are
diamonds (!) and hearts ( ) and the black suits are clubs (♣) and spades (♠). Each
suit contains 13 cards of the following denominations: 2, 3, 4, 5, 6, 7, 8, 9, 10, J (jack),
Q (queen), K (king), and A (ace). The cards J, Q, and K are called face cards.

Mathematician Persi Diaconis, working with David Aldous in 1986 and Dave Bayer
in 1992, showed that seven shuffles are needed to “thoroughly mix up” the cards in an
ordinary deck. In 2000 mathematician Nick Trefethen, working with his father, Lloyd
Trefethen, a mechanical engineer, used a somewhat different definition of “thoroughly
mix up” to show that six shuffles will nearly always suffice. Imagine that the cards in a
deck have become—by some method—so thoroughly mixed up that if you spread them
out face down and pick one at random, you are as likely to get any one card as any other.

a. What is the sample space of outcomes?

b. What is the event that the chosen card is a black face card?

c. What is the probability that the chosen card is a black face card?
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a. What is the sample space of outcomes?

b. What is the event that the chosen card is a black face card?

c. What is the probability that the chosen card is a black face card?

è the 52 cards in the deck.

è E = {J , Q , K , J , Q , K }
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Solution

a. The outcomes in the sample space S are the 52 cards in the deck.

b. Let E be the event that a black face card is chosen. The outcomes in E are the jack,
queen, and king of clubs and the jack, queen, and king of spades. Symbolically,

E = {J♣, Q♣, K♣, J♠, Q♠, K♠}.
c. By part (b), N (E) = 6, and according to the description of the situation, all 52 out-

comes in the sample space are equally likely. Therefore, by the equally likely proba-
bility formula, the probability that the chosen card is a black face card is

P(E) = N (E)

N (S)
= 6

52
∼= 11.5%. ■

Example 9.1.2 Rolling a Pair of Dice

A die is one of a pair of dice. It is a cube with six sides, each containing from one to six
dots, called pips. Suppose a blue die and a gray die are rolled together, and the numbers
of dots that occur face up on each are recorded. The possible outcomes can be listed as
follows, where in each case the die on the left is blue and the one on the right is gray.

A more compact notation identifies, say, with the notation 24, with 53,
and so forth.

a. Use the compact notation to write the sample space S of possible outcomes.

b. Use set notation to write the event E that the numbers showing face up have a sum of
6 and find the probability of this event.

Solution

a. S = {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 41, 42, 43,

44, 45, 46, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}.
b. E = {15, 24, 33, 42, 51}.
The probability that the sum of the numbers is 6 = P(E) = N (E)

N (S)
= 5

36
. ■

The next example is called the Monty Hall problem after the host of an old game
show, “Let’s Make A Deal.” When it was originally publicized in a newspaper column
and on a radio show, it created tremendous controversy. Many highly educated people,
even some with Ph.D.’s, submitted incorrect solutions or argued vociferously against the
correct solution. Before you read the answer, think about what your own response to the
situation would be.
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9.1 Basics of Probability and Counting

In this lecture:

q Part 1: Probability and Sample Space

qPart 2: Counting in Sub lists

Counting
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Counting the Elements of a List

520 Chapter 9 Counting and Probability

Example 9.1.3 The Monty Hall Problem

There are three doors on the set for a game show. Let’s call them A, B, and C . If you pick
the right door you win the prize. You pick door A. The host of the show, Monty Hall,
then opens one of the other doors and reveals that there is no prize behind it. Keeping
the remaining two doors closed, he asks you whether you want to switch your choice to
the other closed door or stay with your original choice of door A. What should you do if
you want to maximize your chance of winning the prize: stay with door A or switch—or
would the likelihood of winning be the same either way?

B C B C B C

Case 1 Case 2 Case 3

Solution At the point just before the host opens one of the closed doors, there is no
information about the location of the prize. Thus there are three equally likely possi-
bilities for what lies behind the doors: (Case 1) the prize is behind A (i.e., it is not behind
either B or C), (Case 2) the prize is behind B; (Case 3) the prize is behind C .

Since there is no prize behind the door the host opens, in Case 1 the host could open
either door and you would win by staying with your original choice: door A. In Case 2
the host must open door C , and so you would win by switching to door B. In Case 3 the
host must open door B, and so you would win by switching to door C . Thus, in two of the
three equally likely cases, you would win by switching from A to the other closed door.
In only one of the three equally likely cases would you win by staying with your original
choice. Therefore, you should switch.

A reality note: The analysis used for this solution applies only if the host always opens
one of the closed doors and offers the contestant the choice of staying with the original
choice or switching. In the original show, Monty Hall made this offer only occasionally—
most often when he knew the contestant had already chosen the correct door. ■

Many of the fundamental principles of probability were formulated in the mid-1600s
in an exchange of letters between Pierre de Fermat and Blaise Pascal in response to ques-
tions posed by a French nobleman interested in games of chance. In 1812, Pierre-Simon
Laplace published the first general mathematical treatise on the subject and extended the
range of applications to a variety of scientific and practical problems.
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Pierre-Simon Laplace
(1749–1827)

Counting the Elements of a List
Some counting problems are as simple as counting the elements of a list. For instance,
how many integers are there from 5 through 12? To answer this question, imagine going
along the list of integers from 5 to 12, counting each in turn.

list: 5 6 7 8 9 10 11 12
↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

count: 1 2 3 4 5 6 7 8

So the answer is 8.
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More generally, if m and n are integers and m ≤ n, how many integers are there from
m through n? To answer this question, note that n = m + (n − m), where n − m ≥ 0
[since n ≥ m]. Note also that the element m + 0 is the first element of the list, the element
m + 1 is the second element, the element m + 2 is the third, and so forth. In general, the
element m + i is the (i + 1)st element of the list.

list: m(= m + 0) m + 1 m + 2 . . . n (= m + (n − m))
↕ ↕ ↕ ↕

count: 1 2 3 . . . (n − m) + 1

And so the number of elements in the list is n − m + 1.
This general result is important enough to be restated as a theorem, the formal proof of

which uses mathematical induction. (See exercise 28 at the end of this section.) The heart
of the proof is the observation that if the list m, m + 1, . . . , k has k − m + 1 numbers,
then the list m, m + 1, . . . , k, k + 1 has (k − m + 1) + 1 = (k + 1)− m + 1 numbers.

Theorem 9.1.1 The Number of Elements in a List

If m and n are integers and m ≤ n, then there are n − m + 1 integers from m to n
inclusive.

Example 9.1.4 Counting the Elements of a Sublist

a. How many three-digit integers (integers from 100 to 999 inclusive) are divisible by 5?

b. What is the probability that a randomly chosen three-digit integer is divisible by 5?

Solution

a. Imagine writing the three-digit integers in a row, noting those that are multiples of 5
and drawing arrows between each such integer and its corresponding multiple of 5.

100 101 102 103 104 105 106 107 108 109 110 · · · 994 995 996 997 998 999
↕ ↕ ↕ ↕

5 ·20 5 ·21 5 ·22 5 ·199

From the sketch it is clear that there are as many three-digit integers that are multi-
ples of 5 as there are integers from 20 to 199 inclusive. By Theorem 9.1.1, there are
199− 20 + 1, or 180, such integers. Hence there are 180 three-digit integers that are
divisible by 5.

b. By Theorem 9.1.1 the total number of integers from 100 through 999 is 999− 100 +
1 = 900. By part (a), 180 of these are divisible by 5. Hence the probability that a
randomly chosen three-digit integer is divisible by 5 is 180/900 = 1/5. ■

Example 9.1.5 Application: Counting Elements of a One-Dimensional Array

Analysis of many computer algorithms requires skill at counting the elements of a
one-dimensional array. Let A[1], A[2], . . . , A[n] be a one-dimensional array, where n
is a positive integer.

a. Suppose the array is cut at a middle value A[m] so that two subarrays are formed:

(1) A[1], A[2], . . . , A[m] and (2) A[m + 1], A[m + 2], . . . , A[n].
How many elements does each subarray have?

b. What is the probability that a randomly chosen element of the array has an even
subscript

(i) if n is even? (ii) if n is odd?
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a. How many three-digit integers (integers from 100 to 999 inclusive) 
are divisible by 5? 

b. What is the probability that a randomly chosen three-digit integer 
is divisible by 5?
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is a positive integer.
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999 − 100 + 1 = 900.

180/900 = 1/5.


